
CMSC 202

Additional Lecture – Makefiles

Prof. Katherine Gibson



Makefiles

 A makefile is a list of rules that can be called 

directly from the terminal

 must be called Makefile or  makefile

 Rules have four parts

 Target – name of object or executable to create

 Dependency List – what Target depends on

 TAB – used to offset an Action

 Action(s) – list of actions to create the Target

CMSC 202 Makefiles 2



Makefile Rule Example

Inher.o: Inher.cpp Inher.h

g++ -ansi -Wall -c Inher.cpp

CMSC 202 Makefiles 3

Target

The file to create.  In this 

case an object file: Inher.o

Dependency List

The files that are required to 

create the object file.  In this case 

Inher.cpp and Inher.h

<TAB>

Used to signal what 

follows as an action

(do not use spaces!)

Action(s)

What needs to be done to create 

the target.  In this case it is the 

separate compilation of Inher.cpp



The make Utility

 Uses a Makefile to automate tasks like the

compilation of a program

 Programs are normally multiple files

 And only a few are changed at a time

 Recompiling everything every time can take 

a long time, and slows down development

 Using make can help with this

CMSC 202 Makefiles 4



Efficiency of make

 make only recompiles files that need to be

 Files that have been updated

 Files that depend on updated files

 Compares the timestamp of the dependency 

list items to that of the target

 If a source is newer than the object file, the 

object file needs to be recompiled

 Likewise if an object file is newer than the 

executable it needs to be re-linked 

CMSC 202 Makefiles 5



Example Makefile

Project1: Project1.o Inventory.o Cd.o Date.o

g++ -ansi -Wall  -o proj1 Project1.o Inventory.o Cd.o Date.o

Project1.o: Project1.c Inventory.h

g++ -ansi -Wall  -c Project1.c

Inventory.o: Inventory.c Inventory.h Cd.h

g++ -ansi -Wall  -c Inventory.c

Cd.o: Cd.c Cd.h Date.h

g++ -ansi -Wall -c Cd.c

Date.o: Date.c Date.h

g++ -ansi -Wall -c Date.c

CMSC 202 Makefiles 6



Specifying a Target

 The first target in the file is the “default target”

 Should be the name of the executable to create

 Project1 (creates proj1 executable)

 To call a specific rule or create a specific 
target, use make <TARGET>

 Omitting the target (typing just “make”) 

will create the default target

CMSC 202 Makefiles 7



Dependency Graph

 A file may depend on one or more other files

 Need to ensure correct compilation order

 Create a dependency graph, with the end 

goal of a executable named “main”

CMSC 202 Makefiles 8

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Our files:
main.cpp 

Point.h      Point.cpp 

Rectangle.h  Rectangle.cpp



 The “main” executable is generated from 3 

object files: main.o  Point.o  Rectangle.o

 “main” depends on these files

 Files are linked together to create “main”

Dependency Graph – Linking

CMSC 202 Makefiles 9

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.o Rectangle.omain.o

main



 Each of the object files depends on a 
corresponding .cpp file

 Object files are generated by compiling the 
corresponding .cpp files

Dependency Graph – Compiling

CMSC 202 Makefiles 10

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.o Rectangle.o

Rectangle.cppmain.cpp

main.o



 Many source code files (.cpp and .h files) 

depend on included header files

 May also be indirect includes; for example

Rectangle.cpp includes Point.h through Rectangle.h

Dependency Graph – Includes

CMSC 202 Makefiles 11

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.h

Rectangle.h

Rectangle.cppmain.cpp



Full Dependency Graph

CMSC 202 Makefiles 12

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.h

Point.o Rectangle.o

Rectangle.h

Rectangle.cppmain.cpp

main.o

main

Link

Include

Compile

Depends 

on



Makefile Macros

CMSC 202 Makefiles 13



Why Even Use Makefiles?

 Compiling, linking, and executing become…

 Easier 

 Quicker (more efficient)

 Less prone to human error

 Also allows us to create and run helper rules

 Clean up unneeded files (like hw2.cpp~)

 Laziness (but efficiently lazy)

CMSC 202 Makefiles 14



Makefile Macros

 Similar to an alias or a #define

 Use when you need something over and over

 Syntax to define a macro:

PROJ = Proj1

CC   = g++

CMSC 202 Makefiles 15

Macro name

Alias for macro
Content

Substituted for macro 

name in rest of file



Macro Examples

CMSC 202 Makefiles 16

DIR1    = /afs/umbc.edu/users/k/k/k38/pub/CMSC341/Proj1/

PROJ    = Proj1

CC      = g++

CCFLAGS = -g -ansi -Wall -I . -I $(DIR1)

OBJECTS = Project1.o Inventory.o Cd.o Date.o

Notice that we can use 

one macro inside another

(declaration order matters)



Using Macros

 To access a macro, use the following format:

$(MACRO_NAME)

 What do each of these rules actually mean?

 (In plain English)

CMSC 202 Makefiles 17

Project1: $(OBJECTS)

$(CC) $(CCFLAGS) -o $(PROJ).c $(OBJECTS)

Project1.o: Project1.c Inventory.h

$(CC) $(CCFLAGS) -c Project1.c



Helper Rules

 You can specify targets that do auxiliary 

tasks and do not actually compile code

 Remove object and executable files

 Print source code

 Submit all code

 Timestamps don’t matter for these tasks

 Good practice to let the makefile know that

 These target are called “phony” targets

CMSC 202 Makefiles 18



Phony Targets

 Same syntax, but preceded by a .PHONY

declaration on the previous line

.PHONY: submit

submit:

scp $(ALL_FILES) \

k38@gl.umbc.edu:cs202proj/proj3/

CMSC 202 Makefiles 19

Same as 

target name

Use a backslash if 

the command is 

longer than one line



More Helper Rules

 Cleaning utilities
clean:

-rm -f *# *~

cleaner: clean

-rm -f *.o

cleanest: cleaner

-rm -f core*; rm -f $(PROJ)

 Pure laziness

make:

emacs Makefile

CMSC 202 Makefiles 20

The -f flag will 

supress the prompt 

to confirm deletion –

and once it’s deleted, 

it’s gone! (For good!)

Be very, very, very, 

VERY careful when 

copying these rules 

into your Makefile 

the first time!



Full Makefile Example

CMSC 202 Makefiles 21

PROJ    = Proj1
CC      = g++
CCFLAGS = -g -ansi –Wall

SOURCES = $(PROJ).c Inventory.h Inventory.c Cd.h Cd.c Date.h Date.c
OBJECTS = $(PROJ).o Inventory.o Cd.o Date.o

$(PROJ): $OBJECTS
$(CC) $(CCFLAGS) -o $(PROJ) $(OBJECTS)

$(PROJ).o: $(PROJ).c Inventory.h
$(CC) $(CCFLAGS) -c $(PROJ).c

Inventory.o: Inventory.c Inventory.h Cd.h
$(CC) $(CCFLAGS) -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
$(CC) $(CCFLAGS) -c Cd.c

Date.o: Date.c Date.h
$(CC) $(CCFLAGS) -c Date.c

.PHONY: submit
submit:

submit cs341 $(PROJ) $(SOURCES) Makefile *.txt

.PHONY: print
Print:

enscript -G2rE $(SOURCES) Makefile *.txt

Target rule

(the first rule

in the file)


